
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Mini-Crowd Research: A Collaborative Model for Involving
Beginner Researchers in Software Engineering Research

Anonymous Author(s)

ABSTRACT
Graduate students (Master’s and PhD) are crucial for the long-term
sustainability of our software engineering research area. Under-
graduate students are more likely to apply to graduate programs
if they are engaged in research during their undergraduate stud-
ies. The traditional model to engage undergraduate students in
research is via one-on-one or small-group apprenticeships with
senior researchers such as professors, postdocs, or PhD students.
However, the traditional model puts a heavy demand for time on
senior researchers and can involve only a relatively small number
of undergraduate students.

We advocate for a novel model, which we call mini-crowd re-
search, to engage a larger number of undergraduate students (e.g.,
10–20–30) working collaboratively on one research project. We
build our model on the successful Crowd Research Initiative (CRI)
that involved 1,500+ participants over several years. We scale down
CRI in terms of the number of students and the duration to fit in
a period corresponding to a summer school break, 3–4 months.
This paper describes our initial experience in running a mini-crowd
research project during Summer 2023.

1 INTRODUCTION
Research in our international software engineering community
substantially depends on the efforts contributed by graduate stu-
dents in Master’s and PhD programs. Recruiting graduate students
requires applications from undergraduate students. Research shows
that undergraduate students are more likely to apply for graduate
programs and to performwell in graduate programs (once accepted)
if they are engaged in research projects during their undergraduate
studies [6, 11, 17, 35]. As a result, including undergraduate students
in our software engineering research projects can help our global
community to increase the pool of graduate applicants.

Many senior researchers, such as professors, postdocs, or PhD
students, from all around the world already include in research
beginner researchers, such as undergraduate students or even high-
school students, but primarily do so via the traditional model. In
this model, a senior project lead works closely with one beginner
or a small group, in an apprenticeship arrangement [18]. Such
traditional model puts a heavy demand for time on the senior leads
and can involve only a relatively small number of undergraduates.
As a personal experience, the senior professor co-author of this
paper could in the past involve only 5–6 undergrads in 2–3 projects
in parallel during the school year or even during a school break.

We would love to involve many more undergraduates in mean-
ingful research experiences, while not substantially increasing the
demand for project lead time, especially during summer break. Our
primary goal is to expose new students to the research process so
that they can (1) make an informed decision whether to join indus-
try or apply for research-based graduate programs, and (2) be better
prepared for graduate programs, should they decide to pursue such

programs. In particular, we a priori reject that the sole metric for
evaluating a summer program should be how many participants
were nudged/convinced to apply for graduate programs. Our sec-
ondary goal is to produce top-notch research results that could be
published in the leading software engineering conferences.

While many scientific projects include crowd-sourced contribu-
tors [3, 4, 8, 26, 29, 30, 34], we are inspired by the successful Crowd
Research Initiative (CRI) [32] that involved 1,500+ participants over
several years in multiple projects. We refer to our model as mini-
crowd research, because we aim for project sizes smaller than the
CRI. Ideally we would prefer 10–30 undergraduates working col-
laboratively on one research project for the period corresponding
to a summer school break, ∼3–4 months.

This paper describes our initial offering of a mini-crowd research
project during Summer 2023. We present our experience and a
plan for a future similar program. In this first offering, we did not
carefully track many metrics, e.g., the number of students who
started but did not contribute to the project. In brief, we involved
15–20 beginner researchers who contributed to various parts of the
overall project and ∼10 more students who started but made no
lasting contribution.We had two project leads (PIs), one postdoc and
one senior professor. A key outcome of our work was a submission
to a SE conference with 17 co-authors (citation omitted for double-
anonymous reviewing). Side efforts also included an accepted paper
(citation again omitted) and several pull requests accepted in open
source. Most importantly, our project provided opportunity for
beginner researchers to learn; §4 summarizes their feedback.

2 KEY COMPARISONS
To position our experience in the context of prior work, we com-
pare our program to two main related lines of work. Steffen et
al. [16] recently performed a software engineering study with 45
researchers. These researchers were actually performing the study,
not just being subjects that were studied. Specifically, the study
was on untangling commits [16]. We refer to this study as UC.

Vaish et al. [32] reported on the Crowd Research Initiative (CRI )
that involved 1,500+ participants over 3+ years in multiple projects
in HCI, computer vision, and data science. The results included
(1) several papers with a fairly large number of co-authors (e.g., 60
authors [27], 70 authors [9], 37 authors [10], 28 authors [33], 29
authors), (2) a novel research platform Daemo [9] for crowdsourced
work (not just crowd research), and (3) most importantly from the
education perspective, upward mobility for participants, placing
dozens of undergraduate students in graduate schools and high-
school students in undergraduate schools. Of particular note is that
3/4 of the participants were from the universities ranked below 500
by Times Higher Education [2] yet their project contributions led
to strong recommendation letters and acceptance in top-ranked
universities in the North America and Europe [1].

We compare our approach to UC [16] and CRI [32] as follows.
1

This manuscript is under review at ICSE'24 and is confidential.
For any questions, please email marinov@illinois.edu.



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• Participants: UC recruited only participants with formal train-
ing in computer science; in contrast, CRI and we issued an open
call for all participants, but we did include selection through an
evaluation task that measures some skills and motivation.

• Ideation:UCproposed a specific task, via a registered report [15],
even before inviting the participants. The benefit is that partic-
ipants can be productive from the very start, but they do not
learn about the process of selecting research topics. In contrast,
CRI performed a full cycle of research projects, first waiting for
students to propose the specific task. However, CRI projects took
longer (6+ months), while we aimed for a tangible research out-
come, e.g., a submitted paper or released dataset, within a typical
school break (∼3–4 months). As a result, we spent some time
allowing the students to propose tasks and learn by discussing
these tasks, but we ended up with a task proposed by the PIs.

• Research area: UC and we focused on software engineering,
while CRI covered HCI, computer vision, and data science.

• Technical work: UC tasks were on labeling a dataset, although
related to code, while our tasks were on developing code. CRI
had a mix of labeling tasks (e.g., in computer vision) and software
development (e.g., in Daemo).

• Collaboration: UC assigned individual, independent tasks for
labeling data. CRI had a mix of individual and collaborative tasks.
In contrast, we had only collaborative code development. All
approaches also had collaborative writing of research papers, but
UC and CRI papers were substantially led by the project leads,
while we allowed the students to take more initiative.

• Credit: UC introduced the notion of research turk, explicitly
aiming “to scale the curation of manually validated data. The
idea is inspired by the mechanical turk and replaces monetary
payment with authorship of data set publication.” [15]. The par-
ticipants were evaluated based on the number of labeled data
items. CRI used an elaborate scheme based on voting and net-
work science to determine the order of paper authors. We used a
more collaborative approach with team discussions to evaluate
the contributions to code and ideas.

• Communication: UC used emails and GitHub to resolve differ-
ences in labeling, while we extensively used Discord for asyn-
chronous communication and Zoom meetings for synchronous
communication. CRI used several platforms, including Slack,
YouTube Live, and “dogfooding” their own Daemo [9].

• Learning: UC participants could not help one another much
because of the independent structure of tasks, while our partici-
pants had numerous instances where they could learn together
and help one another. We even had some student-initiated and
student-attended meetings, with no PI involvement. CRI partici-
pants also had extensive discussions but over a longer period of
time than our project.

In sum, UC focused on (performing) research, whereas we focused
on (training) researchers. CRI covered both of these key aspects.

3 PROGRAM ROADMAP
Our mini-crowd research program consisted broadly of 4 stages, de-
scribed in the following subsections: student recruitment, ideation
for research, student task allocation, and paper writing. We focus
on the aspects that differ the most from the leads’ prior experience

4 8 12 16 20 24 28 weeks

Recruitment Ideation & Brainstorming Paper Writing

Task assignment Task convergence

Figure 1: Program Timeline (weeks since inception)

(the professor and the postdoc mentored over 100 undergrads in
research but not in mini-crowd) and from work such as UC [16]
and CRI [32]. Fig. 1 shows the project timeline, with an estimated
duration of each stage relative to the program initiation.

3.1 Participant Recruitment
The recruitment started with an open “call for students” for a multi-
university summer research program, advertised on social media
and via personal contacts from late January through March of 2023.
We explicitly stated that the research will be unpaid (unlike, say,
Google Summer of Code [30]) and remote. 250+ students who filled
out our online survey were emailed about our mini-crowd research
experience and invited to attempt an evaluation task. The evaluation
task was designed to gauge student expertise with programming
and debugging, and required them to:
• Choose a bug from a dataset (details anonymized for submission)
• Verify that the bug can be reproduced (demonstrated by provid-

ing GitHub Actions for reproducing the work)
• Attempt to fix the bug (optional)

Our goal was to involve students in the comprehensive research
process, from ideation to implemenation, evaluation, and paper
writing. One challenge is to select an appropriate evaluation task
even before the ideation stage begins. Our evaluation task could
not exactly align with the project’s scope before we decided what
the project would be. As such, the evaluation task should evaluate
students’ broad skillset, ability to learn, and motivation. We chose
a challenging task used in a homework assignment (details omitted
for double-anonymous reviewing).

3.2 Communication Platform
Of the 250+ students who were contacted with the evaluation task,
32 qualified for the program and were emailed to vote on the online
communication platform of their choice. The most voted platform
was Discord, so we chose it, although the PIs were not familiar
with it. While the students had themselves voted for Discord, we
later got comments that it was not ideal. Some students mentioned
that they did not perceive Discord as a “serious” platform for work,
potentially because none of their courses used Discord for com-
munication. We experimented with different techniques to divide
discussions, using “channels” to divide high-level topics, such as
discussions about tasks or meetings, and “threads” to discuss more
specific sub-topics (a particular sub-task or challenge). In the future,
we would likely use a platform that the PIs know better, e.g., Slack.

3.3 Ideation and Brainstorming
Discussing Research Process for (Mini-)Crowds.Given that our
program had mostly undergraduates, we expected students to have
little to no prior research experience. To give them context about

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mini-Crowd Research: A Collaborative Model for Involving Beginner Researchers in Software Engineering Research

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

crowd research, they were introduced to the CRI work by Vaish et
al. [32]. To start the research process, the PIs asked the participants
to read this paper and answer the following questions: “What did
you like about the paper? Any ideas for how the described process
could be improved?”. After a brief discussion, the PIs decided to
proceed with a process similar as described in CRI [32].
Self-Choosing Topics. The next phase was to ask participants to
propose specific research topics that our entire mini-crowd could
work on. The participants were encouraged to read/skim recent
papers from top software engineering conferences (but were not
given specific papers to read) or to reflect on the problems they
have experienced in their own software development. This phase
took about three weeks and produced some small discussions on
Discord and on Zoom (e.g., participants presenting slides on papers
they read). However, the phase did not appear to be a productive
means of identifying a viable project topic, given our timeline. In
retrospect, the participants were too inexperienced in research to
effectively propose a research topic. In the future, we plan to either
(1) skip this phase altogether and replace it by giving students a set
of topics to choose from, or (2) plan for projects longer than one
summer (e.g., CRI projects typically lasted for many months).
Lead-Proposed Topics. To help students to narrow down a poten-
tial project to work on, the PIs proposed two specific topics related
to software engineering (in a rather informal tone, characteristic of
our Discord discussions):

(1) “Collecting a dataset is a kind of project that can effectively
involve 30 students, some contributingmanually, some automat-
ing some steps, some working more, some working less.”

(2) “Translate some large-ish code from one programming lan-
guage or framework to another. Again, this project can support
multiple students but not as easily as collecting a dataset.”

3.4 Lead-Proposed Tasks
Because it did not appear promising for the participants to identify
a research topic doable within the summer period, the PIs assigned
specific technical tasks for the participants to explore. The PIs
took into account the diversity of the participants’ background and
assigned four tasks with different characteristics in terms of the
research method (e.g., reproducing prior work vs. building a new
technique) and in terms of the programming language (e.g., Python
vs. Java). Specifically, the PIs proposed that the students direct their
attention toward the following tasks:

(1) “There exists a bug database for Python called BugsInPy. Please
select few bugs and try to reproduce them.”

(2) “Evaluate the RegMiner tool on some repositories on GitHub.”
(3) “Manually translate some (ideally small) microservice code to

Java (or any other language not used in the original service).”
(4) “Manually translate a simple Java library to Python. You should

be able to do this task even on your laptops/desktops.)”

The first three tasks had relatively low traction for a variety
of reasons. Some were too difficult considering students’ back-
grounds. Some required more powerful computers (e.g., to run mul-
tiple Docker containers) than the students had. Some were building
from research code and datasets that are not well maintained.

After some time, task 1 branched off, no one worked on task 2,
one student completely translated a microservice for task 3 and
another student partially translated another microservice. In the
end, task 1 resulted in a short submission co-authored by only one
student participant, and a few other students acknowledged for
their help. Some students left or disengaged while we searched for
the topic. All remaining students shifted to task 4. The PIs specifi-
cally proposed task 4 because it had a low barrier for participation,
allowing all students to work using only their laptops and at least
one language they were familiar with (Java or Python).

3.5 Core Technical Work
After identifying the research topic, the actual process of code
translation got under way. To begin with the translation, students
started with the library identified in task 4 (§3.4). The PIs first asked
students to translate tests for the library, to allow contributors to
get familiar with the codebase and to validate their translation of
the actual code later on. To give other students some idea of how
to contribute, we first had a few classes translated by the student
with the most experience to be used as a reference.

To minimize inter-dependencies between contributors, we used
a reverse topological sort to map out the class dependencies in the
project under translation. Once the graph was generated, students
could mark a class as “In Progress” and begin their work. To reduce
work duplication, students tracked their progress on GitHub issues
visible to all participants. We also had some internal discussion to
use a dedicated management tool (such as Trello), but the PIs con-
sidered them unnecessary for our mini-crowd scale. However, some
students faced challenges in the work distribution and reported
ambiguity in task assignment (see §4.4 for survey results).

To store our work, we used a common repository (monorepo) on
GitHub for all related artifacts One advantage of having a monorepo
was access to all available work done, with a high degree of visibil-
ity on the progress of the translation. Pros and cons of monorepos
are widely reported in literature [12, 19, 25]. We had some incidents
where students put their work in the wrong place, or directly com-
mitted incorrect code, leading to extensive untangling of commits
to revert any breaking changes.

As a result, such incidents encouraged us to add Continouous
Integration (CI) workflows to our repository, to run tests before
code was merged in the main tree. We added our first CI workflow
4 weeks into the “Task Assignment” stage (Fig. 1) that carried out
selective regression testing, and only ran on parts of the project that
were modified in the pull request (PR). We also added workflows
for style checks for both languages (Python and Java) highlight
any inconsistencies at review time. All PRs required one or more
approvals from collaborators (PIs or code owners) before being
merged into the main branch of the tree.

Other than work on code translation, students in the program
were also able to draft an evaluation task that directly related to
the current project. This task can help recruit more students as
contributors, and scale our program to continue work in the future.

Fig. 2 aggregates the number of pull requests, issues, comments,
and reviews over time, showing the initial lag in levels of contribu-
tions but the gradual rise as students overcame the steep learning
curve (§ 4.2 has more details). Each line represents one participant.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Cumulative number of contributions per student

(a) Distribution by country (b) Distribution by academic level

Figure 3: Demographics of our mini-crowd participants

3.6 Timeline
Fig. 1 shows the timeline for the mini-crowd research, with an
approximate duration for each stage. After half of the program, we
got enough work done to aim for a submission to an SE conference.
The leads announced on Discord that the entire team may submit a
paper if we make significant progress in our code translation. We
also announced that the submission co-authors will be only those
participants who have made or will make non-trivial contributions
to the project before the submission deadline. Providing the spe-
cific deadline and motivation to co-author a paper substantially
increased the progress on the project, especially as we got closer
to the SE conference deadline. For a future mini-crowd research
program, we would evaluate how different methods of mentorship
affect student’s commitment levels, as this could create a greater
long-term impact in the overall research experience [21].

3.7 Convergence: Writing a paper
Once it became clear that we can aim for a submission, participants
were asked to compile specific challenges that they faced within a
shared document. This document eventually grew into a repository
of data which included bugs, challenges faced during translation,
performance analyses, and statistical reports. In the days near the
submission, we had dedicated Zoom meetings to discuss progress
and challenges with the most active contributors, as there was
increased emphasis on finishing the translation in time.

The paper itself was written by one of the PIs, along with 2–3
of the most active students, while other students only provided
smaller comments or feedback on the text. We were able to suc-
cessfully submit a paper to a SE conference (details omitted for
double-anonymous review) with a total of 17 co-authors.

Co-author demographics: Fig. 3 shows the geographic distribu-
tion and the academic qualifications of the 17 co-authors. They came
from a total of 6 countries, including 10 undergraduate students, 3
high-school students, and 2 professional software developers.

4 PARTICIPANT SURVEY
After submitting to an SE conference, we conducted a survey of all
participants to gather their feedback on the mini-crowd research
experience. We asked the following questions:

(1) What skills did you learn during the summer research?
(2) What were some personal/technical challenges that you faced?
(3) What aspects of the mini-crowd research did you like?
(4) What aspects of the mini-crowd research could be better?

We group students’ responses to questions 1, 2, and 3 according
to common categories and count the frequency of each category.
Question 4 is the most important for future iterations, and to expose
students to qualitative research [7], we follow a more systematic
coding approach [31]: We categorize the answers and determine
sentiments from student responses. For question 4, two co-authors
collectively analyzed the responses and agreed on a final coding.

4.1 Perceived Learning
Technical Skills (29). The most common perceived learning cate-
gory was technical skills, where students reported learning about
the technical content of our paper submission and the process
needed to reach that stage. One student noted: “[I] learned software
development skills, usage of Python, and other external tools.”
Collaboration and Communication (13). The second most com-
mon category was students learning how to contribute to a larger
project by communicating their ideas and progress, and by collabo-
rating effectively.
Research and Academia (7). The third most common category
referred to students’ abilities to hone their skills in understand-
ing research papers and to gain insights into research methods.
One student reported achieving a better balance of “optimizing
understanding vs time spent reading” research papers. The PIs as-
sume that all students learned important and transferable research
skills [4] but did not report them when asked about general “skills”.
Documentation and Presentation (2). The least common re-
ported category was students learning how to document their
progress (e.g., in pull requests on GitHub) and share their findings
during Zoom meetings. Yet again, the PIs believe that the students
greatly improved but are not even aware of their improvements.

4.2 Challenges Encountered
Technical Challenges (11). The most commonly reported chal-
lenges were technical, including adapting to using GitHub, working
with the compiler framework (details omitted for double-blind re-
view), or creating paper artifacts.
Personal Challenges (9). Many students faced personal chal-
lenges such as adjusting to Zoom meeting times (with participants
in timezones up to 12 hours apart) and health-related issues.
Steep Learning Curve (7). The third most common category was
the steep learning curve, referring to the complexity of the program
and the need for students to acquire new knowledge rapidly in
the starting phase. One student noted “getting up to speed on the
technologies and collaboration tools involved” was challenging.
Technological (3). The least common category included the need
for a VPN to use Discord in China and the setup of necessary
software and configurations on a student’s computer.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mini-Crowd Research: A Collaborative Model for Involving Beginner Researchers in Software Engineering Research

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.3 Positive Aspects
Positive Work Environment (13). This category was the most
commonly reported positive of our research program. Students
received substantial support, especially for beginners to software
engineering. Participants praised others as accountable, collabo-
rative, and cooperative, e.g., a student described “working with a
number of excellent and friendly people is so wonderful, which is
still inspiring and motivating me now.” We are particularly happy
for students who would not have had other opportunities to be
engaged in research due to their country or university.
Remote Work and Flexibility (10). The remote nature of the
program and the flexibility it offered participants in terms of time
commitments and input levels was also a great positive. The leads
emphasized that the students can put in as much or as little time
as they want, but the contributions will be reflected in the author
order on potential submissions and in the recommendation letters.
Nature of Research (5). The participants were exposed to the
numerous avenues and opportunities for exploration in the mini-
crowd research experience, under the guidance from the PIs.
Technical Aspects (3). The surprisingly infrequently reported pos-
itive was technical aspects, including some student’s appreciation
for the evaluation task and the use of GitHub to organize the code.
Community Engagement (1). Finally, the mini-crowd research
fostered community engagement and interest in software engi-
neering projects, and students were motivated when one student
published a related paper while just joining our mini-crowd team.

4.4 Potential Improvements
Lack of Documentation for Newcomers (6). The most com-
monly reported negative was the lack of documentation or onboard-
ing for newcomers. One student noted that detailed documentation
“would clarify expectations for tasks such as pull requests, reducing
the need for repetitive feedback and expediting progress”.
Communication Challenges (5). The second most commonly
reported negative category, including the lack of progress updates
through Discord as an example issue faced by the student.
Inefficient/Infrequent Meetings (5). Several students reported
that meetings did not allow the students to focus on one task, and
having multiple tasks diluted the quality of the meetings.
Ineffective Task Tracking (4). This feedback was more common
during the project than in the survey. One student reported the
task tracking and distribution being unorganized, “some tracked
through GitHub issues, some within Discord and some via Excel”.
Unclear goals/focus (3). The least reported category, but likely
the most important, was that some students found that for much
of the duration of the project they were unsure of the ultimate
objective, which reduced participation and motivation levels.

4.5 Non-Survey Feedback
Several students left our mini-crowd project, and we had no “exit
interviews” [14]. Most students just quietly disenaged, and some
cited lack of time before leaving. One student provided a particularly
honest and insightful feedback: “I don’t feel like continuing with this
project anymore. Reasons for the same: 1. Lack of clarity in terms of
the final goal that we are trying to achieve with this. 2. There seems to
be an over-emphasis on publishing a paper without actually reasoning

whether the paper would create an impact later in the industry. 3. Due
to the above reasons, I was never motivated to work on the project as
trying to achieve a goal, rather it just became a way of improving
software-engineering skills.
Yes, I agree that there were many ‘goods’ in the project too but I
thought of highlighting these points to you as I have always seen you
being open to taking feedback for improving your future programs.”

5 RELATEDWORK
Our mini-crowd research program is not the first model to involve
beginner researchers (at scale). §2 already described our main influ-
ences. We review some of the most recent work.

Li et al. [20] and Nguyen et al. [24] study and evaluate programs
relating to scaling research collaborations at different levels. In
contrast to their strict schedules, our program had no roadmap, and
students had flexibility to choose what they worked on.

Sharma et al. [28] share insights into common obstacles hin-
dering undergraduate research experiences. Many of the barriers
they identified arose in our project as participants reported their
struggle with balancing other time commitments or were confused
about the ultimate project goals.

Many research papers evaluated different methods of research
recruitment and organization. Lykourentzou et al. [22] propose Self-
Organizing Pairs for online collaboration among individuals with no
prior collaborative experience. In ourmini-crowd program, students
frequently self-organized into smaller groups, often pairs, to address
specific project aspects, which allowed efficient knowledge transfer
and completion of several tasks simultaneously.

Arony et al. [23] and Graßl et al. [13] analyze conditions related
to diverse student teams, studying the impact of team diversity on
stress and learning outcomes, and emphasizing the balance between
autonomy and guidance, and the development of technical and soft
skills. Our program has similarities as our student population was
diverse, and many students had similar opinions about perceived
learning and challenges, and the independence vs. guidance (§4).

Dalpiaz [5] describes crowd-based requirements engineering as
having potential value in both practice and research. The author’s
reflections on his own experience with CrowdRE in practice simi-
larly mirrors the nature of our project including the importance of
establishing a clear research goal and active moderation by leaders.

6 CONCLUSIONS
Mentoring undergraduate reseachers requires significant time and
effort, and is traditionally done only for small groups. To democra-
tize this opportunity for more students, we propose a mini-crowd
research model where a team of 10–30 students contributes to a sin-
gle research goal. Our first mini-crowd experience started with 32
students. We received some contributions from 15–20 students who
remained with us for the program duration. We allowed students
to experience most of the research process, including ideation. Our
mini-crowd approach enabled 15 students to effectively contribute
to one project, co-authoring a paper submitted to SE conference.
We hope that our approach will motivate others to experiment
with similar research programs for larger groups of undergraduates.
Data Availability: We could release only survey responses but
after carefully redacting them to not reveal the participant identity.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

REFERENCES
[1] 2017. Crowd Research Initiative. http://crowdresearch.stanford.edu/initiative.
[2] 2023. The Times Higher Education World University Rankings. https://

timeshighereducation.com/world-university-rankings/2023/world-ranking.
[3] H Bassi, L Misener, and AM Johnson. 2020. Crowdsourcing for research: per-

spectives from a Delphi panel. SAGE Open 10, 4 (2020).
[4] Tom Bourner, Linda Heath, and Asher Rospigliosi. 2014. Research as a transfer-

able skill in higher education. Higher education review 46, 2 (2014), 20–46.
[5] Fabiano Dalpiaz. 2021. On the Value of CrowdRE in Research and Practice. In

2021 IEEE 29th International Requirements Engineering Conference Workshops
(REW).

[6] M Kevin Eagan Jr, Sylvia Hurtado, Mitchell J Chang, Gina A Garcia, Felisha A
Herrera, and Juan C Garibay. 2013. Making a Difference in Science Education:
The Impact of Undergraduate Research Programs. American Educational Research
Journal (2013).

[7] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. Guide to
advanced empirical software engineering (2008), 285–311.

[8] Lina Eklund, Isabell Stamm, and Wanda Katja Liebermann. 2019. The crowd in
crowdsourcing: Crowdsourcing as a pragmatic research method. First Monday 4,
10 (2019).

[9] Snehal Gaikwad, Durim Morina, Rohit Nistala, Megha Agarwal, Alison Cossette,
Radhika Bhanu, Saiph Savage, Vishwajeet Narwal, Karan Rajpal, Jeff Regino,
et al. 2015. Daemo: A self-governed crowdsourcing marketplace. In Adjunct
proceedings of the 28th annual ACM symposium on user interface software &
technology.

[10] Snehalkumar (Neil) S. Gaikwad, Durim Morina, Adam Ginzberg, Catherine
Mullings, Shirish Goyal, Dilrukshi Gamage, Christopher Diemert, Mathias Bur-
ton, Sharon Zhou, MarkWhiting, Karolina Ziulkoski, Alipta Ballav, Aaron Gilbee,
Senadhipathige S. Niranga, Vibhor Sehgal, Jasmine Lin, Leonardy Kristianto,
Angela Richmond-Fuller, Jeff Regino, Nalin Chhibber, Dinesh Majeti, Sachin
Sharma, Kamila Mananova, Dinesh Dhakal, William Dai, Victoria Purynova,
Samarth Sandeep, Varshine Chandrakanthan, Tejas Sarma, Sekandar Matin,
Ahmed Nasser, Rohit Nistala, Alexander Stolzoff, Kristy Milland, Vinayak
Mathur, Rajan Vaish, and Michael S. Bernstein. 2016. Boomerang. In Proceed-
ings of the 29th Annual Symposium on User Interface Software and Technology.
https://doi.org/10.1145/2984511.2984542

[11] Joanna Gilmore, Michelle Vieyra, Briana Timmerman, David Feldon, andMichelle
Maher. 2015. The relationship between undergraduate research participation
and subsequent research performance of early career STEM graduate students.
The Journal of Higher Education 86, 6 (2015), 834–863.

[12] Marco Glorie, Andy Zaidman, Arie van Deursen, and Lennart Hofland. 2009.
Splitting a large software repository for easing future software evolution—an
industrial experience report. Journal of Software Maintenance and Evolution:
Research and Practice 21, 2 (2009), 113–141.

[13] Isabella Graßl, Gordon Fraser, Stefan Trieflinger, and Marco Kuhrmann. 2023.
Exposing Software Engineering Students to Stressful Projects: Does Diversity
Matter? (2023).

[14] Don H Harris. 2000. The Benefits of Exit Interviews. IEEE Engineering Manage-
ment Review 28, 3 (2000), 63–66.

[15] Steffen Herbold. 2020. With Registered Reports Towards Large Scale Data Cura-
tion. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results.

[16] Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,
Taher A. Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip
Makedonski, Matin Nili Ahmadabadi, Kristof Szabados, Helge Spieker, Matej
Madeja, Nathaniel Hoy, Valentina Lenarduzzi, ShangwenWang, Gema Rodríguez-
Pérez, Ricardo Colomo-Palacios, Roberto Verdecchia, Paramvir Singh, Yihao Qin,
Debasish Chakroborti, Willard Davis, VijayWalunj, HongjunWu, DiegoMarcilio,
Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Simon Eismann, Anna-
KatharinaWickert, IvanoMalavolta, Matúš Sulír, Fatemeh Fard, Austin Z. Henley,
Stratos Kourtzanidis, Eray Tuzun, Christoph Treude, SiminMaleki Shamasbi, Ivan
Pashchenko, Marvin Wyrich, James Davis, Alexander Serebrenik, Ella Albrecht,
Ethem Utku Aktas, Daniel Strüber, and Johannes Erbel. 2022. A Fine-grained
Data Set and Analysis of Tangling in Bug Fixing Commits. Empirical Software
Engineering 27, 6 (2022), 125.

[17] Paul R Hernandez, Anna Woodcock, Mica Estrada, and P Wesley Schultz. 2018.
Undergraduate research experiences broaden diversity in the scientific workforce.
BioScience 68, 3 (2018), 204–211.

[18] Anne-Barrie Hunter, Sandra L Laursen, and Elaine Seymour. 2007. Becoming a
scientist: The role of undergraduate research in students’ cognitive, personal,
and professional development. Science Education 91 (2007), 36–74.

[19] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K. Smith,
Collin Winter, and Emerson Murphy-Hill. 2018. Advantages and Disadvantages
of a Monolithic Repository: A Case Study at Google. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice.
https://doi.org/10.1145/3183519.3183550

[20] Ze Shi Li, Nowshin Nawar Arony, Kezia Devathasan, and Daniela Damian. 2023.
“Software is the easy part of Software Engineering” - Lessons and Experiences
from A Large-Scale, Multi-Team Capstone Course. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET). https://doi.org/10.1109/ICSE-SEET58685.2023.00027

[21] Marcia C Linn, Erin Palmer, Anne Baranger, Elizabeth Gerard, and Elisa Stone.
2015. Undergraduate research experiences: Impacts and opportunities. Science
347, 6222 (2015), 1261757.

[22] Ioanna Lykourentzou, Federica Lucia Vinella, Faez Ahmed, Costas Papastathis,
Konstantinos Papangelis, Vassilis-Javed Khan, and Judith Masthoff. 2022. Self-
organization in online collaborative work settings. CoRR (2022).

[23] Nowshin Nawar Arony, Kezia Devathasan, Ze Shi Li, and Daniela Damian. 2023.
Leveraging Diversity in Software Engineering Education through Community
Engaged Learning and a Supportive Network. (2023), 247–258. https://doi.org/
10.1109/ICSE-SEET58685.2023.00029

[24] David Van Nguyen, Daniel A Epstein, and Shayan Doroudi. 2023. Effects of
Scaling Up Apprentice-Style Research: Perceptions from Mentors and Mentees.
In Proceedings of the Tenth ACM Conference on Learning@ Scale.

[25] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines of
Code in a Single Repository. Commun. ACM (2016).

[26] Kaja Scheliga, Sascha Friesike, Cornelius Puschmann, and Benedikt Fecher. 2018.
Setting up crowd science projects. Public Understanding of Science 27, 5 (2018),
515–534.

[27] Alok Shankar Mysore, Vikas S. Yaligar, Imanol Arrieta Ibarra, Camelia Simoiu,
Sharad Goel, Ramesh Arvind, Chiraag Sumanth, Arvind Srikantan, Bhargav
HS, Mayank Pahadia, Tushar Dobha, Atif Ahmed, Mani Shankar, Himani
Agarwal, Rajat Agarwal, Sai Anirudh-Kondaveeti, Shashank Arun-Gokhale,
Aayush Attri, Arpita Chandra, Yogitha Chilukur, Sharath Dharmaji, Deepak
Garg, Naman Gupta, Paras Gupta, Glincy Mary Jacob, Siddharth Jain, Shashank
Joshi, Tarun Khajuria, Sameeksha Khillan, Sandeep Konam, Praveen Kumar-
Kolla, Sahil Loomba, Rachit Madan, Akshansh Maharaja, Vidit Mathur, Bharat
Munshi, Mohammed Nawazish, Venkata Neehar-Kurukunda, Venkat Nirmal-
Gavarraju, Sonali Parashar, Harsh Parikh, Avinash Paritala, Amit Patil, Rahul
Phatak, Mandar Pradhan, Abhilasha Ravichander, Krishna Sangeeth, Sreecharan
Sankaranarayanan, Vibhor Sehgal, Ashrith Sheshan, Suprajha Shibiraj, Aditya
Singh, Anjali Singh, Prashant Sinha, Pushkin Soni, Bipin Thomas, Kasyap
Varma-Dattada, Sukanya Venkataraman, Pulkit Verma, and Ishan Yelurwar.
2015. Investigating the "Wisdom of Crowds" at Scale. In Adjunct Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology.
https://doi.org/10.1145/2815585.2815725

[28] Rhea Sharma, Atira Nair, Ana Guo, Dustin Palea, and David T Lee. 2022. “It’s
usually not worth the effort unless you get really lucky”: Barriers to Undergrad-
uate Research Experiences from the Perspective of Computing Faculty. In ICER
’22. Association for Computing Machinery.

[29] Raphael Silberzahn and Eric L Uhlmann. 2015. Crowdsourced research: Many
hands make tight work. Nature 526, 7572 (2015), 189–191.

[30] Jefferson O Silva, Igor Wiese, Daniel M German, Christoph Treude, Marco A
Gerosa, and Igor Steinmacher. 2020. Google summer of code: Student motivations
and contributions. Journal of Systems and Software 162 (2020), 110487.

[31] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: a critical review and guidelines. In ICSE.

[32] Rajan Vaish, Snehalkumar (Neil) S. Gaikwad, Geza Kovacs, Andreas Veit, Ranjay
Krishna, Imanol Arrieta Ibarra, Camelia Simoiu, Michael Wilber, Serge Belongie,
Sharad Goel, James Davis, and Michael S. Bernstein. 2017. Crowd Research:
Open and Scalable University Laboratories. In UIST. https://doi.org/10.1145/
3126594.3126648

[33] Mark E. Whiting, Dilrukshi Gamage, Snehalkumar (Neil) S. Gaikwad, Aaron
Gilbee, Shirish Goyal, Alipta Ballav, Dinesh Majeti, Nalin Chhibber, Angela
Richmond-Fuller, Freddie Vargus, Tejas Seshadri Sarma, Varshine Chandrakan-
than, TeogenesMoura, MohamedHashim Salih, Gabriel Bayomi Tinoco Kalejaiye,
Adam Ginzberg, Catherine A. Mullings, Yoni Dayan, Kristy Milland, Henrique
Orefice, Jeff Regino, Sayna Parsi, Kunz Mainali, Vibhor Sehgal, Sekandar Matin,
Akshansh Sinha, Rajan Vaish, and Michael S. Bernstein. 2017. Crowd Guilds.
In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing. https://doi.org/10.1145/2998181.2998234

[34] Yuxiang Zhao and Qinghua Zhu. 2014. Evaluation on crowdsourcing research:
Current status and future direction. Information systems frontiers 16 (2014),
417–434.

[35] Andrew L Zydney, Joan S Bennett, Abdus Shahid, and Karen W Bauer. 2002.
Impact of Undergraduate Research Experience in Engineering. Journal of Engi-
neering Education (2002).

6

http://crowdresearch.stanford.edu/initiative
https://timeshighereducation.com/world-university-rankings/2023/world-ranking
https://timeshighereducation.com/world-university-rankings/2023/world-ranking
https://doi.org/10.1145/2984511.2984542
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1109/ICSE-SEET58685.2023.00027
https://doi.org/10.1109/ICSE-SEET58685.2023.00029
https://doi.org/10.1109/ICSE-SEET58685.2023.00029
https://doi.org/10.1145/2815585.2815725
https://doi.org/10.1145/3126594.3126648
https://doi.org/10.1145/3126594.3126648
https://doi.org/10.1145/2998181.2998234

	Abstract
	1 Introduction
	2 Key Comparisons
	3 Program Roadmap
	3.1 Participant Recruitment
	3.2 Communication Platform
	3.3 Ideation and Brainstorming
	3.4 Lead-Proposed Tasks
	3.5 Core Technical Work
	3.6 Timeline
	3.7 Convergence: Writing a paper

	4 Participant Survey
	4.1 Perceived Learning
	4.2 Challenges Encountered
	4.3 Positive Aspects
	4.4 Potential Improvements
	4.5 Non-Survey Feedback

	5 Related Work
	6 Conclusions
	References

